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Increasing ocean plastic pollution is irreversibly harming ecosystems and human economic activities. We

partner with a non-profit organization and use optimization to help them clean up oceans from plastic faster.

Specifically, we optimize the route of their plastic collection system in the ocean to maximize the quantity

of plastic collected over time. We formulate the problem as a longest path problem in a well-structured

graph. However, since collection directly impacts future plastic density, the corresponding edge lengths are

non-convex and non-decomposable. After analyzing the structural properties of the edge lengths, we propose

a search-and-bound method, which leverages a relaxation of the problem solvable via dynamic programming,

to efficiently find high-quality solutions with certificates of near optimality (around 6% in practice). On one-

year of ocean data, our optimization-based routing approach increases the quantity of plastic collected by

over 60% compared with their current routing strategy, hence speeding up the progress towards plastic-free

oceans. It also provides a tool to evaluate the impact of system characteristics on the overall efficiency and

inform the design of future systems.

Key words : Ocean cleaning; Sustainable operations; Longest path problem; Dynamic programming;

1. Introduction

Oceans are vital to life on earth: they home a vast array of plant and animal species and play

a critical role in regulating the climate. In addition, they provide important economic benefits,

supporting industries like fishing, aquaculture, tourism, and the extraction of oil and minerals.

However, oceans are being threatened by growing and severe plastic pollution. As of 2015, 80% of

the 6.3 billion tonnes of plastic waste ever generated ended up in landfills or the natural environment

(Geyer et al. 2017). According to the latest estimates, there were around 3 million tonnes of plastic

waste floating in the ocean as of 2020 (Kaandorp et al. 2023). Furthermore, the amount of plastic
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emissions in the ocean increases by 4% every year (Kaandorp et al. 2023), with 0.5–2.7 million

tonnes emitted by rivers every year (Meijer et al. 2021, Lebreton et al. 2017, Schmidt et al. 2017).

Plastic pollution is posing a threat to the marine ecosystem and the species that rely on it (Gall

and Thompson 2015, Wilcox et al. 2015). It also has a detrimental impact on human activities. For

example, We refer to Li et al. (2016) for a comprehensive review of marine plastic pollution, its

sources and effects. Because of its environmental and economic relevance, the reduction of oceans

pollution has been listed as an explicit target in the United Nations’ Sustainable Development

Goal #14 ‘Life Below Water’.

The reduction of marine plastic pollution needs to be addressed from two fronts: (i) reducing

yearly emissions and (ii) removing plastic already emitted in the oceans. Regarding the first effort,

many legislative and non-legislative actions have been taken to ban (or discourage) the use of

single-use plastic (e.g., plastic bags or straws), with varying degrees of efficiency (see Schnurr

et al. 2018, for a review). Given the importance of land-based pollution and the role of rivers in

transporting land-based pollution into the oceans, solutions also include improved in-land plastic

waste management, recycling, and plastic interception in rivers (see, e.g., Dijkstra et al. 2021,

Winterstetter et al. 2021). On the other hand, the active removal of plastic already emitted in the

oceans has received lower attention and may be regarded as less efficient than preventing emissions

due to the low average concentration of floating plastic in the oceans.

Fortunately, floating plastic debris get trapped in large circulating currents, called gyres, and

tend to accumulate in specific areas in the oceans called ‘garbage patches’. The largest of these five

patches, the “Great Pacific Garbage Patch” (GPGP), is situated halfway between California and

Hawaii. Latest estimates are that nearly 80,000 tonnes of plastic float inside the GPGP, an area of

1.6 million km2 or three times the size of France (Lebreton et al. 2018). Figure 1 displays a map of

the GPGP together with yearly average plastic density estimates. In short, plastic density in the

GPGP is about 20 times higher than average.

The Ocean Cleanup is a Dutch NGO whose mission is to clean up oceans from plastic. In addition

to interception activities in rivers, they have developed a technology to collect plastic debris in

the oceans. They have been trialling their solutions in the GPGP since 2018, and operating their

newest system since 2021. Their system consists of a large (600-meter wide and 4-meter deep, at

the beginning of our collaboration) U-shaped screen, slowly dragged by two ships, that can capture

floating plastics without capturing any marine animals. In this collaboration, we investigate the
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Figure 1 Plastic density map in the Great Pacific Garbage Patch (GPGP). (Source: https://theoceancleanup.

com/great-pacific-garbage-patch/)

potential for improving the efficiency of their plastic collection system by optimizing its route in

the GPGP. In particular, we use data and models about weather conditions and plastic density

in the GPGP to construct an optimization-based routing algorithm that directly maximizes the

quantity of plastic collected, hence speeding up the progress towards cleaner and healthier oceans.

1.1. Problem description

The Ocean Cleanup’s plastic collection system (which we later refer to as the “system”) is composed

of two ships and a U-shaped screen (or net), as shown in Figure 2. In its original configuration

(system 002/B), the screen had a span of 600 meters, but it has been increased to 1.4 km in the

latest version of the system (system 003). It acts like an artificial coastline that intercepts floating

debris. These floating plastic particles then gradually accumulate in a partially closed contraption

at the end of the screen, called the retention zone.

Routing of the system in the GPGP needs to satisfy some navigation requirements. To preserve

the physical integrity of the screen, for example, the system can only slowly change course and

cannot make any sharp turns. In addition, in order not to catch any fish or other marine life, the

system moves at a fixed and low speed of around 1.5 knots (2.78 km/h). Finally, as any sea vessel,

it is sensitive to weather and navigation conditions such as waves and wind. For example, when the

wave height exceeds 4.5 meters, the system has to head against the waves to protect the screen.

Above 6-meter waves, the screen no longer intercepts any plastic.

https://theoceancleanup.com/great-pacific-garbage-patch/
https://theoceancleanup.com/great-pacific-garbage-patch/
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Figure 2 Plastic collection system developed by The Ocean Cleanup. Parameter values correspond to version 03.

( Source: https://theoceancleanup.com/oceans/)

The retention zone has a limited capacity of 25 metric tons and needs to be emptied regularly.

The process of emptying the retention zone is called an extraction and is a complex maneuvre: the

screen is taken out of the water by a crane and the collected plastic is discharged on deck, before

being sorted and sent on-shore for recycling. In particular, the crane cannot be operated when the

wave height exceeds 2.5 meters. Overall, an extraction takes around 24 hours, during which the

collection is stopped. Hence, extractions play an important role in the overall collection efficiency

and extraction scheduling should be incorporated in our search for a better routing system.

Our primary objective is to maximize the quantity of plastic collected. The Ocean Cleanup has

developed a suite of models to estimate the density of plastic in the GPGP (Klink et al. 2022).

By using hindcast and forecast models of ocean currents, waves and wind, the dispersal of marine

plastics is modelled with a Lagrangian approach. Assimilation methods (Peytavin et al. 2021) and

plastic-specific transport models are also investigated (Sainte-Rose et al. 2022). On the sensing

front, satellite imaging (Park et al. 2021, 2022) and remote sensing techniques (de Vries et al. 2021)

are developed to acquire field data. These models provide a picture of where plastics are located

and how they move within this region, hence creating a dynamic view of present and future plastic

density (similar to Figure 1, yet evolving over time). Our objective is to integrate these predictions

directly into an optimal routing problem, so the system naturally accounts for plastic movements,

which is crucial because both the system and the plastics are moving at comparable speeds. A

central challenge is to account for the fact that the collection process removes plastic from the

oceans and, as such, should directly impact the (estimate of) future plastic density. Hence, plastic

density cannot be seen as an exogenous input to our model only, it is also impacted by our routing

decisions.

https://theoceancleanup.com/oceans/
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To summarize, our objective is to find a route for the system and to schedule extractions of

the retention zone, in order to maximize the total quantity of plastic collected by the system. In

particular, we need to account for weather and operational constraints, plastic dynamics, and the

direct impact of our decision on future plastic density.

1.2. Contributions and structure

In this work, we develop and validate an optimization approach to jointly optimize the routing and

the extractions of the plastic collection system. After reviewing the relevant literature in Section

2, we make the following contributions:

• In Section 3, by discretizing space and time, we model the routing and scheduling decisions

as paths in a directed acyclic graph (DAG). Among others, this model can account for relevant

operational and weather constraints and provides efficient dynamic programming algorithms for

longest-path type of optimization problems.

• Under this lens, the quantity of plastic collected can be seen as lengths of edges in this graph

and our problem as a longest path optimization problem. However, due to the direct impact of our

routing decisions on future plastic density, our resulting optimization problem is a non-linear and

non-decomposable longest path problem. We formally analyze the structure of our path-dependent

lengths in Section 4 and bound the estimation error obtained when ignoring the path dependency.

• We propose a search-and-bound strategy to efficiently find a high-quality solution for this class

of problems, with certificates of near-optimality (Section 4). Our algorithm leverages a relaxation

of the problem to partition and search through the space of trajectories. We also propose a tailored

branch-and-bound scheme to solve this class of problems exactly, using our search-and-bound

algorithm as the root node analysis (Appendix D). On small instances (2-day planning), our search-

and-bound strategy finds the optimal solution, while scaling better with respect to the problem

size than exact approaches.

• Finally, we evaluate the benefit of our search-and-bound algorithm on a one-year dataset of

ocean weather conditions and plastic density in Section 5. We find that our optimization approach

yields at least a 60% improvement in terms of average collection efficiency compared with their

current routing strategy. In particular, we observe greater benefits (+100%) during winter months,

because weather conditions (and wave height in particular) are limiting the ability to extract, hence

exacerbating the benefit of jointly optimizing the route and the extraction schedule. In addition,



den Hertog et al.: Towards Plastic-Free Oceans
6 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

our algorithm allows The Ocean Cleanup to explore the non-linear impact of strategic system

dimensioning decisions (e.g., span of the system and size of the retention zone) on the resulting

efficiency.

2. Literature Review

Our problem can be summarized as a ship joint routing and scheduling problem, where the objective

is to steer the system in the GPGP and schedule extractions (i.e., emptying of the retention zone)

in order to maximize the quantity of plastic collected. In Section 2.1, we review the optimization

literature related to marine operations and ship routing. We then focus on methods for fishing

optimization, which is similar to our plastic collection problem. Eventually, we will model our

problem as that of a longest path in an appropriately defined graph, so we review the literature

on longest path optimization in Section 2.3.

2.1. Optimization for ship routing problems

Following Granado et al. (2021), we divide the literature into weather and tactical routing.

In weather routing, the objective is to find a route that connects a given origin with a given des-

tination and minimizes travel time or fuel consumption, which depend on weather and navigation

conditions. The typical planning horizon in weather routing is a few weeks. The great circle passing

through these two locations provides the shortest route in terms of travel distance. So, the optimal

route is often to be found in the vicinity of the shortest route. Most approaches create a discrete

grid of potential locations around the great circle using isochrone lines (James 1957, Hagiwara

and Spaans 1987) or a fixed grid (Zoppoli 1972, de Wit 1990). By representing a trajectory as a

sequence of locations, the weather routing problem can thus be formulated as a shortest path prob-

lem, which can be solved efficiently by Dynamic Programming (DP; Zoppoli 1972, de Wit 1990,

Meng and Wang 2011, Ting and Tzeng 2003, Aydin et al. 2017) or Dijkstra’s algorithm (Takashima

et al. 2009, Skoglund 2012, Sen and Padhy 2015). Additional decision variables, such as engine

power in Shao et al. (2012), can be modeled within a shortest path formulation by extending the

description of the ‘state’ of the ship. Heuristic methods have also been used to deal with more

complex objectives or constraints, such as simulated annealing (Kosmas and Vlachos 2012), the A*

algorithm (Yoon et al. 2018, Langbein et al. 2011), or particle swarm optimization methods (Zheng

et al. 2019). Recently, Cheng and Zhang (2018), Chen et al. (2019) used reinforcement learning
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approach to optimize the route while learning the complex dynamics between waves and speed or

fuel consumption. We refer to Zis et al. (2020) for a comprehensive review on ship weather routing.

For our problem, we adopt a similar modeling paradigm by discretizing the location of the system

in the GPGP. However, we adopt a more fine-grained discretization of time (3-hour time steps)

and space (8 km), and extend the state variable to account for extraction decisions as well, so our

resulting graph is of much larger scale, i.e., in the order of 106 nodes. In addition, the destination in

our problem is not fixed, which can lead to more complex trajectories, such as circling or crossing.

In terms of objective, we assume that the fuel efficiency does not depend on the routing decision

because of the limited propelling speed so our primary objective is to maximize the amount of

plastic collected in a given amount of time. After appropriately defining edge weights, we formulate

our problem as a longest path optimization problem and solve it using DP strategies similar to the

ones used in weather ship routing.

Tactical ship routing consists in finding the lowest cost route for a ship that needs to visit

different locations (e.g., a cargo ship visiting different ports). Since the time horizon is long (several

weeks or months) and the ports are fixed isolated location, the problem can be formulated as

a Traveling Salesperson Problem (TSP), solved by branch-and-bound (Appelgren 1971, Stalhane

et al. 2015), branch-cut-and-price (Battarra et al. 2014), heuristic methods (Malaguti et al. 2018),

or DP (Fagerholt and Christiansen 2000). We refer to Christiansen et al. (2004) for a comprehensive

review of the literature and its connection to supply chain management.

2.2. Fish routing

Among all maritime activities, fishing is the most comparable to our plastic collection problem

because the objective is to capture floating elements in the oceans.

Before solving any route optimization problem, one needs to first predict the density of fish at

different locations. However, unlike plastic, fishes are actively moving, which makes their precise

location highly unpredictable. Instead, most works describe fish density with coarse granular dis-

tributions (see, e.g., Jones et al. 2012, Parra et al. 2017, Coll et al. 2019); see Robinson et al. (2017)

for a review of marine-based species distribution models. There is also opportunity to improve

these predictions using real-time remote sensing measurements (Iglesias et al. 2007). Unfortunately,

estimating the accuracy of these different approaches remains an open challenge. Indeed, 94% of

the studies reviewed by Robinson et al. (2017) failed to report the uncertainty of their model.
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In the weather routing literature, algorithms that consider wave and wind forecast to design safe

and efficient routes have been applied to fishing (e.g., Vettor et al. 2016). In these use cases, the

objective of maximizing the quantity of fish collected is captured in the choice of the target desti-

nation, and is typically left to the end-user. This implementation bypasses the issue of inaccurate

predictions by letting the human user identify (based on quantitative models and intuition) the

destination. To the best of our knowledge, no weather ship routing approach uses quantitative fish

density predictions directly as an input to optimize the short-term (within the next days) route

of fishing ships. Instead, predictions on the presence and movements of fish banks or ‘clusters’ are

mostly used as locations in a tactical ship routing problem. For tuna fishing for example, floating

devices are dispersed in the ocean to attract fishes. Groba et al. (2015, 2018, 2020) model the

problem of visiting all devices as a dynamic TSP, where locations can drift due to sea current.

In our problem, pieces of plastic move passively according to sea currents, like the floating

aggregate devices. However, there are no devices to attract plastic and keep the integrity of plastic

clusters. Instead, high-plastic-density clusters are constantly forming and breaking depending on

the currents. Accordingly, we use a fluid dynamics model to predict plastic location and movements,

and integrate it into an optimization formulation analogous to that of weather ship routing.

2.3. Optimization for longest path

Given weights on the edges of a graph, the length of a path is defined as the sum of the weights

of the edges composing the path. The problem of finding the longest path in a graph is shown to

be NP-complete as a generalization of the Hamiltonian path problem (Karp 2010). Actually, the

longest path problem cannot be approximated in polynomial time unless P =NP, as proved by

Karger et al. (1997) for undirected and Björklund et al. (2004) for directed graph.

In contrast, finding the shortest path in a graph can be solved in polynomial time using algo-

rithms like the greedy-type Dijkstra’s algorithm (Dantzig 1960, Dijkstra 2022) or the Bellman–Ford

algorithm (Shimbel 1954, Ford Jr 1956, Bellman 1958, Moore 1959). We refer to Pollack and

Wiebenson (1960), Schrijver (2012) for comprehensive reviews. Understanding the structural differ-

ences between the longest and shortest path problems and their implications for problem complexity

has been a vivid research topic (see, e.g., Cormen et al. 2022), unravelling conceptual connections

between shortest path algorithms and DP (Sniedovich 2006).

Nonetheless, polynomial time algorithms for longest path problems exist for particular classes of

graphs such as trees (Bulterman et al. 2002, Uehara and Uno 2007), block graphs, cactus graphs
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(Uehara and Uno 2007), and cocomparability graphs (Ioannidou and Nikolopoulos 2013). The

graph we propose in Section 3.1 is a DAG. The longest path problem in a DAG can be solved in

linear time by transforming it into the shortest path problem (Pandit 1962, Cormen et al. 2022), or

using DP on the topological sort of the DAG (Madraki and Judd 2019). The DAG in our project

has a natural topological sort, and we use DP in Section 3.2 to find the longest path.

3. Graph-based Routing Model

In this section, we propose a graph-based formulation for our problem. By discretizing time and

space, we show in Section 3.1 how the routing decision can be modeled as a path in a sparse

directed acyclic graph. Accordingly, longest path optimization problems can be solved efficiently

over this graph using DP approaches, as presented in Section 3.2. We conclude this section by

discussing how extraction scheduling decisions can be incorporated within this graph-based model

(details are deferred to Appendix A.2) and formally identifying the set of tractable optimization

problems we can solve in Section 3.3.

3.1. Discretization and graph representation

To describe the system’s trajectory and model the key decisions and constraints of our problem,

we discretize space onto a finite grid, as represented in Figure 3. Similarly, we divide our planning

horizon using a fixed timestep. In our implementation, we use an 8-km step to discretize space and

a 3-hour time step. Denoting L the set of all possible locations and T := {0,1, . . . , T} the set of

time periods, we can represent a system trajectory as a sequence of locations, {ℓt}t∈T with ℓt ∈L.

However, as explained in Section 1.1, the steering direction also plays an important role in our

problem because of operational (e.g., no sharp turns) and weather constraints (e.g., if the wave

height exceeds 4.5 meters, need to navigate against the waves). Hence, at a given time t, knowledge

of the current location ℓt is not sufficient to determine whether the constraints are satisfied and what

the accessible next locations are. Accordingly, we describe a trajectory by a sequence {(ℓt, dt)}t∈T ,

where ℓt is the location at time t and dt ∈D is the steering direction at time t. Here, D denotes the

(finite) set of allowable steering directions in our grid, D := {↑,↗,→,↘,↓,↙,←,↖}. Note that

we introduce redundancy in the information used to describe the trajectory of the system at time

t. Essentially, providing ℓt and dt is equivalent to providing ℓt and ℓt−1. Alternatively, given an

initial location ℓ0, the sequence of directions {dt}t∈T is sufficient to describe the system’s trajectory.
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(1,1) (1,2) (1,3)

(3,1) (3,2) (3,3)

(2,1) (2,2) (2,3)

(a) Discretization of path

(1,1) (1,2) (1,3)

(3,1) (3,2) (3,3)

(2,1) (2,2) (2,3)

High wave area

(b) High wave region and direction at t= 1

Figure 3 Example: routing in a small grid.

However, as we will see in this section, our description using both location and direction allows us

to efficiently account for the different constraints in our problem.

Figure 3a shows an example of a discretized trajectory. For simplicity, we associate L with a

set of discrete coordinates in R2, which are in a one-to-one correspondence with the latitude and

longitude of the system. In this example, at t= 0, the system is at location (0,0), moving south

east (↘). It keeps the same steering direction at t = 1 and reaches (1,1). At t = 2, it can reach

three different locations depending on whether it continues south east or decides to change course

and move → or ↓. Because the propelling speed of our system is limited (in order not to catch any

marine life), we use discretization steps for time (3 hours) and space (8 km) that are consistent

with this low propelling speed (1–1.5 knots) and assume that the system in one location can only

reach the neighbouring locations at the next time period. We could relax this assumption and

adopt a finer discretization strategy to account for travel time differences between diagonal and

horizontal/vertical moves or allow for different propelling speed depending on the steering direction

(e.g., to maintain a constant speed relative to water).

Using terminology from DP, we refer to the triplet s := (ℓ, d, t) ∈ L×D ∈ T as the state of the

system. For each state s= (ℓ, s, t), we can then define its set of successors, i.e., the set of admissible

next states s′ = (ℓ′, s′, t+1) that satisfy all operational and weather constraints, such as:

• Consistency between locations and directions: The next location ℓ′ needs to correspond

to the location reached from ℓ after following the direction d′, which we could express algebraically

as “d′ = ℓ′− ℓ” after appropriately mapping L and D to vectors in R2.

• No sharp angles: In our problem, the angle between the steering directions d and d′ is at most

45 degrees (or π/4). For example, for s= ((2,2),↘,1) in Figure 3a, we must have d′ ∈ {→,↘,↓}.
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• High-wave regions: When the wave height exceeds 4.5 meters, the system has to navigate

against the waves. For example, in Figure 3a-3b, assume that the location at t= 1 is in a high-wave

region with waves going north-north-east. Then, according to this constraint, the next direction d′

can only be ↙ or ↓.

Our model can thus account for any constraint defined on the location or direction of the system—

we provide a list of the operational constraints of our problem in Appendix A.1. In Appendix

A.2, we describe how to extend the state space further, to incorporate the decision of extraction

scheduling and impose the associated constraints (in particular, extraction can only be performed

when the wave height is below 2.5 meters). All together, these constraints define the successors of

a state s, which we concisely denote succ(s). For the example, in Figure 3, we have succ((2,2),↘

,1)) = {((3,2),↓,2)}. In other words, the system only has one feasible next state given the current

state and weather conditions.

With these notations, we can represent admissible trajectories as paths on a graph G = (S,E).

The set of nodes S can be naturally partitioned by the time period t ∈ T , i.e., S = ∪t∈T St, where

St is the set of feasible states at time t and is defined recursively. At time t= 0, if we are given an

initial location ℓ0 only, then the set of all possible initial states is S0 = {(ℓ0, d,0) : d∈D}. We then

apply the recursion

St+1 =∪s∈St succ(s).

Similarly, the set of edges can be decomposed into E =∪T
t=1Et, with Et+1 = {(s, s′)∈ St×St+1 : s′ ∈

succ(s)}. In particular, observe that the graph G is a DAG. Furthermore, it is relatively sparse.

Because of the no-sharp-turn constraint, the number of edges satisfies |Et|=O(|St|). Figure 4 shows

the graph corresponding to the example of Figure 3. Here, S0 = {((1,1),↘,0)}. The dashed orange

nodes (edges) represent the states (transitions) forbidden by weather-related constraints.

In our implementation, we plan for 7 days with 3-hour time steps, so T = 7×8 = 56 and the grid

of all reachable locations is of size |L|= (56+1+56)× (56+1+56) = 12,769. Hence, for each time

t, the number of possible states for time t is bounded as follows: |St| ≤ |S|× |D| ≈ 105.

Thanks to the convenient structure of the graph G, given fixed weights on the edges, we can

efficiently find the longest path, i.e., the reward-maximizing trajectory. In the next section, we

describe an efficient DP approach for solving such longest path problems, assuming all edges are

associated with a fixed and known reward. This observation motivates us to define the reward of an
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((1, 1), , 0)

((1,2), , 1)

((2,2), , 1)

((2,1), , 1)

((2,3), , 2)

((2,3), , 2)

((1,3), , 2)

((3,2), , 2)

((3,2), , 2)

((3,3), , 2)

((3,1), , 2)

Figure 4 The structure of graph in the example of Figure 3. Edges and nodes in orange dashes are forbidden by

the weather constraints.

edge as the quantity of plastic collected when the system passes through that edge. Unfortunately,

as we discuss in Section 1.1, properly defining these rewards is non-trivial and introduces non-

linearities in our optimization problem due to plastic dynamics and the impact of past decisions

and future plastic density.

3.2. Efficient search for longest path

For this section, we assume that a set of weights for each edge of our graph G is given, we for

e ∈ E . Again, intuitively, the rewards should correspond to the quantity of plastic collected when

the system moves along edge e at time t, but we defer a formal definition to Section 4. Under this

assumption, our plastic collection problem would be equivalent to finding the longest path in G

with edges weighted by w. Because G is a DAG, the longest path can be found efficiently using a

DP algorithm.

We describe the DP algorithm in a forward manner, but it could equivalently be solved and

described in a backward manner. For any state s∈ St+1, let V
t+1(s) denote the length of the longest

path connecting s to S0. Formally,

V t+1(s) := max
s0∈S0,...,st∈St

t∑
τ=0

wsτ ,sτ+1
with st+1 = s.
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The key idea in the DP algorithm is that the solution of the optimization problem above can be

computed recursively by connecting the longest path between S0 and s′ and the edge (s′, s) for

some s′ ∈ St, i.e.,

V t+1(s) = max
s′∈St:s∈succ(s′)

{
ws′,s +V t(s′)

}
.

The maximization above can be solved by exhaustively searching through St. Fortunately, in our

graph G, because of the no-sharp-angle constraint, we have |{s′ ∈ St : s ∈ succ(s′)}| ≤ 3, so this

maximization problem can be solved in O(1) operations. Note that the solution to the maximization

problem V t+1(s) is a trajectory or sequence of states from time 0 to time t, which can also be

computed recursively when computing the value of V t+1(s). This recursive procedure is the basis

of the DP algorithm described in Algorithm 1. Figure 5 shows an example of a 7-day collection

route, where the background map represents the plastic density on day 4, when the system is at

the triangle location.

Algorithm 1: Dynamic Programming Algorithm for Finding the Longest Path

Data: Weighted graph G with weight {ws,s′}(s,s′)∈E ;

Initialize (values and optimal paths): V 0(s) = 0, path[s] = {s}, for all s∈ S0;

for t = 1:T do
for s∈ St do

Find the optimal previous state, s∗ ∈ argmaxs′∈St−1:s∈succ(s′) {ws′,s +V t−1(s′)};

Update value function: V t(s) =wt
s∗,s +V t−1(s∗) ;

Update optimal path: path[s]← path (path[s∗], s);
end

end

Find the optimal terminal state s⋆ ∈ argmaxs∈ST
V T (s);

Return: value V T (s⋆), longest path path[s⋆].

Observe the exceptional computational efficiency of the DP algorithm. At each iteration t, the

algorithm performs O(|St|) =O(|L||D|) operations. Hence, the total computational complexity is

of the order O(T |L||D|), i.e., linear in T , although there is an exponential number of possible

trajectories—O(3T ) given the no-sharp-turn constraint. In our implementation, the total number

of operations required by Algorithm 1 is bounded by | succ(s)| ×T |L||D| ≈ 17× 106, while modern

computers can execute around > 108 additions per second. In contrast, evaluating all 356 ≈×1027

trajectories would require billions of years.
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Figure 5 Example of an optimal 7-day route (starting at the diamond), represented on day 3 and day 5 (triangle

location).

3.3. Summary: Power of the graph-based modeling

In this section, we propose a graph-based modeling to represent the routing decision as a path in

a sparse DAG, G. In Appendix A.2, we show how we can extend the state space S of our system

and the graph G to also account for extraction scheduling. Hence, we obtain a similar DAG where

each path now corresponds to a sequence of routing and extraction scheduling decisions.

The DP algorithm described in Section 3.2 (Algorithm 1) is an efficient approach for solving

longest path problems over this graph. In this work, we will be particularly interested in problems

where rewards are associated with states instead of edges, i.e., longest path problems of the form

max
x∈X

∑
t∈T

∑
s∈St

rtsx
t
s, (1)

where xt
s ∈ {0,1} indicates whether the system is in state s at time t and X denotes the set of

admissible such binary variables. A formal definition of the feasible set X is provided in A.3. Of

course, problems of the form (1) can be solved by Algorithm 1, as longest path problems with

weights ws,s′ = rts′ for (s, s
′) ∈ Et. Conceptually, one can interpret the DP approach as an efficient

partitioning of the set X . At the end of Algorithm 1, the set of trajectories X is partitioned

according to the terminal state they reach. V T (s) corresponds to the value of the longest path

problem across all paths terminating at s, and the variable path[s] contains one path achieving

this value.
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4. Path-Dependent Reward Structure

Since our graph-based formulation presented in Section 3.1 allows us to efficiently find trajectories

that maximize a given reward, a natural approach is to cast our plastic collection problem as a

longest path problem. Because plastic are freely floating in the oceans, however, plastic particles are

constantly moving and the plastic-collecting system directly impacts these dynamics. We present

the dynamics of plastic movements in the absence of any collection in Section 4.1, and then derive

the resulting dynamics for our objective function in Section 4.2. In particular, the rewards (or edge

length) we need to consider are path-dependent, i.e., they depend on the entire past trajectory of

the system. We analyze the structure of such path-dependent rewards in Section 4.3, and propose

an efficient search-and-bound algorithm to find near-optimal solutions to the resulting non-linear

longest path optimization problem in Section 4.4.

4.1. Fluid mechanics model of free-floating plastic dispersal

Plastic particles move passively in the oceans and, as such, their movements can be modeled and

predicted using fluid dispersal models. Among others, the engineering team at The Ocean Cleanup

models the velocity of plastic particles in the oceans using data on sea currents and waves, and

taking into account the Stokes drift (Stokes 1847) and Eddy diffusivity (Taylor 1915) phenomena.

Denoting rtℓ the quantity of plastic present at time t ∈ T and at location ℓ ∈ L, these fluid

dispersal models provide us with estimates on the quantity of plastic present in the region at times

(r0, . . . ,rT ) as well as structural relationships connecting the vectors. Formally, from the models

developed by The Ocean Cleanup, we also obtain matrices Qt ∈RL×L
+ such that

rt+1 =Qtrt. (2)

Each entry Qt
ℓ,ℓ′ of the matrix Qt indicates the fraction of plastic present at location ℓ′ at time t

that moves to location ℓ at time t+1. Of course, if the total quantity of plastic is constant (which

is a reasonable assumption given our relatively short planning horizon), then the matrix Qt should

be left stochastic, i.e.,
∑

ℓ∈LQ
t
ℓ′,ℓ = 1 for all ℓ∈L. In this case, we can interpret Qt as the transition

matrix of a Markov process. Yet, the only property of Qt that we leverage in our approach is that

it has non-negative entries.
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Remark 1. In practice, note that the matrices Qt are large, 125,000×125,000 in our implementa-

tion, so computing matrix-vector products involving Qt’s is computationally challenging, although

the vectors rt can be computed during a preprocessing step. Even the constructino of the matrix

Qt from the particle-level fluid dispersal model can be time consuming. We discuss computational

aspects related to the plastic dynamics model in Appendix C.

4.2. Path dependency

Given this information, we now define a relevant objective for our longest path problem. While the

plastic density vectors (or ‘maps’) rt, t ∈ T , defined in the previous section, describe the plastic

dynamics in absence of any collection process, our system actively removes plastic from the ocean

and the collected plastic no longer evolves according to (2). In other words, the quantity of plastic

collected by our system (and the locations where this plastic has been collected) directly impacts

the future spatial distribution of plastic. It is relevant to our optimization problem because our

system moves at a speed comparable to that of the plastic. We refer to this phenomenon as path

dependency and now appropriately define a reward (or length) vector for our optimization problem

that takes this phenomenon into account.

Let us denote the location of the system at time t through a one-hot vector xt ∈ {0,1}L, where

xt
ℓ = 1 if and only if the system is in ℓ at time t. We denote the quantity of plastic present (or

reward) associated with each location at time t rt
|x0:t−1 ∈ RL

+, where x0:t−1 concisely denotes the

sequence {x0, . . . ,xt−1} and emphasizes the dependency on the past trajectory. If the system is in

location ℓ at time t, it collects a fraction α∈ [0,1] of the plastic present. Hence, it collects αrt
ℓ|x0:t−1

and the remaining (1−α)rt
ℓ|x0:t−1 continues to float in the ocean, together with the plastic present

in other locations, rt
ℓ′|x0:t−1 for ℓ′ ̸= ℓ. All together, the spatial density of plastic at time t+1, rt+1

|x0:t ,

should depend on rt
|x0:t−1 and xt through the following recursion

rt+1
|x0:t =Qt

(
rt
|x0:t−1 −αrt

|x0:t−1 ◦xt
)
. (3)

In (3), the symbol ◦ denotes the Hadamard or element-wise product between two vectors. Hence,

rt
|x0:t−1 −αrt

|x0:t−1 ◦xt corresponds to the density map where we remove a fraction α of the plastic

in the location of the cleaning system.1 Note that since Qt, xt, and r0 have non-negative entries,

one can show by induction that rt+1
|x0:t ≥ 0.

1 The dynamics in (3) implicitly assume that we can decompose the time interval [t, t+1) into two distinct steps: a
first step where some of the plastic present at time t is removed, and a second step where the remaining plastic float
according to the dynamics captured by Qt. Of course, this is a simplification of reality where these two steps occur
concurrently. Yet, we believe it is an appropriate model of reality, which captures the essence of path dependency.
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With these dynamics in mind, the problem of jointly routing the system and scheduling the

extractions in order to collect the maximum amount of plastic possible can be formulated as the

following longest path optimization problem:

max
x∈X

∑
t∈T

∑
s∈St

rts|x0:t−1x
t
s s.t. rt+1

|x0:t =Qt(rt
|x0:t−1 ,x

t), (4)

which is analogous to the longest path problem (1) except that the rewards are no longer fixed but

also depend on the past decisions, x0:t.

Remark 2. Note that, with a slight abuse of notations, we use the variable xt
s in (4) to encode for

the state of the system at time t, while plastic dynamics (3) are described using binary variables

xt
ℓ encoding for the location of the system (location being one component of the state only)—and

similarly for the associated rewards. However, it should be clear that we can recover the location

from the system’s state via a simple affine mapping and that the reward dynamics described at a

location level in (3) imply similar dynamics for the state rewards. We formally define this mapping

in Appendix B.1 and introduce a generic operator Qt in the optimization problem (4) to concisely

capture the resulting dynamics on the state variables/rewards. In the remainder of this section,

for ease of notations, we will implicitly work with location-based x variables when analyzing the

structure of the rewards generated by the recursive formula (3) in Section 4.3 but refer to the

state-level variables when describing optimization algorithms for solving (4) in Section 4.4. This

simplification is valid because the mapping between the two descriptions is monotonous.

Unfortunately, Problem (4) is much more challenging to solve than (1) because the reward vector

depends on x itself so the objective is non-linear. In other words, (4) can be seen as a non-linear non-

decomposable longest path problem, i.e., where the length of a path can no longer be decomposed

into independent edge lengths, because the reward of each state depends on the past trajectory.

To better understand the dynamics and complexities of the problem, we first study analytically

the path-dependent reward vectors defined by the recursion (3) in Section 4.3 before proposing an

efficient numerical algorithm for finding solutions to (4) in Section 4.4.

4.3. Reward decomposition

We now analytically analyze the structure of the path-dependent reward rt+1
|x0:t .

To build intuition, we start by the special case where plastic does not move, i.e., when the

matricesQt are the identity matrices. In this case, in the absence of any plastic collection, the plastic
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density maps rt defined by Equation (2) are constant over time, r0 = ... = rT =: r. Accordingly,

we drop the time superscript in our (path-dependent) rewards rt (and rt
|x0:t−1 , although the path-

dependent reward r|x0:t−1 still depends on time t through the past trajectory x0:t−1. In this case,

we have the following expansion:

Lemma 1. When the matrices Qt are all equal to the identity matrix, we have

r|x0:t = r+
∑

1≤k≤t

(−α)k
∑

0≤t1<···<tk≤t

r ◦xt1 ◦ · · · ◦xtk .

Proof of Lemma 1 In this case, the plastic dynamics (3) simplifies as

r|x0:t = r|x0:t−1 −αr|x0:t−1 ◦xt = r|x0:t−1 ◦ (1−αxt) = r ◦ (1−αx0) ◦ · · · ◦ (1−αxt).

The Hadamard product being commutative and associative, we can use the classical polynomial

expansion technique to obtain

r|x0:t = r ◦

[ ∑
0≤k≤t

(−α)k
∑

0≤t1<···<tk≤t

xt1 ◦ · · · ◦xtk

]
=

∑
0≤k≤t

(−α)k
∑

0≤t1<···<tk≤t

r ◦xt1 ◦ · · · ◦xtk .

□

Remark 3. The expansion of the path-dependent reward in Lemma 1 is analogous to the inclusion-

exclusion principle. Indeed, given n finite sets A1,A2, . . . ,An, the inclusion-exclusion principle states

that the cardinality of their union is given by

| ∪n
i=1 Ai|=

n∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩Aik |.

Actually, the result of Lemma 1 can be directly derived from the formula above by appropriately

defining the sets Ai as the plastic particles encountered by the system in each location and time.

Lemma 1 shows that the path-dependent reward r|x0:t can be computed from r by applying

successive corrections. The kth-order correction in this expansion involves Hadamard products of

the form xt1 ◦ · · · ◦ xtk , each of them being different from the 0 vector if and only if there exists

a location ℓ such that xt1
ℓ = · · · = xtk = 1. In other words, the first-order correction consists in

removing a fraction α of the plastic in locations visited at least once by the system; the second-

order correction adds a fraction α2 of the plastic in locations visited as least twice by the system;
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and so on. Accordingly, the terms in this expansion decay exponentially in k because of the αk

term and because the number of locations being updated decreases. Indeed, for any k≥ 0, we have∑
0≤t1<···<tk<tk+1≤t

r ◦xt1 ◦ · · · ◦xtk ◦xtk+1 ≤
∑

0≤t1<···<tk≤t

r ◦xt1 ◦ · · · ◦xtk .

In the general case, the plastic particles move according to the matrix Qt so they are not assigned

to a fixed location. Still, the intuition of Lemma 1 holds: the path-dependent rewards rt
|x0:t−1 can be

obtained from the original rewards rt by removing a fraction α of the plastic particles encountered

once, adding a fraction α2 of the plastic particles encountered twice, ... We derive analytically the

first-order expansion of the path-dependent reward in the general case in Proposition 1.

Proposition 1. The path-dependent reward rt+1
|x0:t can be approximated as

rt+1
|x0:t = rt+1−α

∑
0≤t1≤t

(Qt× · · ·×Qt1) (rt1 ◦xt1)+O(α2). (5)

Proof of Proposition 1 We prove the result by induction. For t= 0, rt+1
|x0:t = r1

|x0:0 and Equation

(3) leads to

r1
|x0:0 =Q0r0−αQ0

(
r0 ◦x0

)
= r1−αQ0

(
r0 ◦x0

)
.

Hence, in this case, r1
|x0:0 is exactly equal to the first-order expansion (in α) proposed in (5).

Let us now assume that the expansion (5) holds for some t≥ 0. Then, at time t+1, we have

rt+2
|x0:t+1 =Qt+1rt+1

|x0:t −αQt+1
(
rt+1
|x0:t ◦xt+1

)
by (3).

We then expand rt+1
|x0:t to obtain

Qt+1rt+1
|x0:t =Qt+1

(
rt+1−α

∑
0≤t1≤t

(Qt× · · ·×Qt1) (rt1 ◦xt1)+O(α2)

)
= rt+2−α

∑
0≤t1≤t

Qt+1(Qt× · · ·×Qt1) (rt1 ◦xt1)+O(α2),

and

αQt+1
(
rt+1
|x0:t ◦ x̃t+1

)
= αQt+1

(
rt+1 +O(α)

)
◦xt+1 = αQt+1

(
rt+1 ◦xt+1

)
+O(α2).

Regrouping the two pieces together leads to

rt+2
|x0:t+1 =rt+2−α

∑
0≤t1≤t+1

(Qt+1×Qt · · · ×Qt1) (rt1 ◦xt1)+O(α2),

i.e., the expansion (5) for t+1. □
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Proposition 1 exhibits the same structure as in the static-plastic case except that now the

cumulative product of transition matrices Qt × · · · ×Qt1 accounts for the movement of plastics

encountered at time t1, between time t1 and t+1. We also provide the second-order expansion in

Appendix B.3.

Finally, from the analogy with the inclusion-exclusion principle, one can expect that truncating

the expansion at a fixed order k with k even (resp. odd) leads to an upper (resp. lower) bound on the

path-dependent reward. Proposition 2 shows that zero-th and first-order expansion provide valid

upper and lower bound respectively on the path-dependent reward, which can be a computationally

efficient way to estimate these rewards given the size of the matrices Qt’s.

Proposition 2. The path-dependent reward rt+1
|x0:t satisfies the following bounds:

rt+1−α
∑

0≤t1≤t

(Qt× · · ·×Qt1) (rt1 ◦xt1) ≤ rt+1
|x0:t ≤ rt+1. (6)

The proof of Proposition 2 (by induction) is deferred to Appendix B.2.

4.4. Adjusted dynamic programming algorithm

In this section, we propose an efficient algorithm for solving our longest path problem with path-

dependent rewards (4).

Let us concisely denote r the plastic density maps obtained by applying the fluid advection

equations (2) without any active collection, and r|x its path-dependent version. Our objective is

to find the longest path according to the path-dependent rewards r|x, (4). If, instead, we use r as

rewards, we obtain a problem of the form (1), which we call the relaxed problem. Both problems

optimize over the same feasible space, x ∈ X , but differ in their objective function, ⟨r,x⟩ and

⟨r|x,x⟩ respectively. For concision, we use ⟨·, ·⟩ to denote the inner product between two vectors.

Let us denote x⋆(r) and x⋆(r|x) their respective solutions.

In fact, x⋆(r) is the solution returned by Algorithm 1. Because r|x ≤ r (Proposition 2) and

because flows are non-negative,

⟨r|x⋆(r|x),x
⋆(r|x)⟩ ≤ ⟨r,x⋆(r|x)⟩ ≤ ⟨r,x⋆(r)⟩=:UB,

where the last inequality follows from the fact that x⋆(r|x)∈X is feasible for (1) and the optimality

of x⋆(r). In other words, the value of the relaxed optimization problem (1) provides a valid upper

bound on the value of (4). This result is intuitive: ignoring the effect of our collection on future
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plastic collection leads to an optimistic estimate of the plastic we can actually collect. In addition,

x⋆(r)∈X is feasible for (4) so

⟨r|x⋆(r),x
⋆(r)⟩ ≤ ⟨r|x⋆(r|x),x

⋆(r|x)⟩.

Note that the reward vectors in the two sides of this inequality are different because they correspond

to different paths x⋆(r) and x⋆(r|x). Hence, x
⋆(r) also provides a valid lower bound on the value

of (4). Altogether, Algorithm 1 can be used to return a feasible solution to Problem (4) alongside

an optimality gap, which, according to Proposition 2, scales quadratically with T and linearly with

α.

Furthermore, any other feasible solution x∈X provides a valid, and potentially better, solution.

In Algorithm 2, we propose to search for improved solutions by leveraging not only the solution

provided by Algorithm 1 but its partitioning of the feasible space by terminal states. Formally,

in its final stage, Algorithm 1 partitions the space of trajectories X according to the state they

reach at time T . For a state s, Algorithm 1 returns the length (according to r) of the longest path

reaching s, V T (s), as well as one path of that length, xs. Accordingly, we use V T (s) to select a few

(K) high-potential terminal states s. For each of these states, we consider its associated trajectory

xs and compute its path-dependent rewards r|xs , which is the most expensive step in Algorithm 2

(⋆). In Appendix D.1, we describe and compare different strategies for selecting K high-potential

terminal states. In our final implementation, we geographically cluster the space of terminal states

into K regions and consider one candidate trajectory per cluster, as represented in Figure 6.

Algorithm 2, which we call the adjusted DP algorithm, can be interpreted as a relaxation-induced

search (Danna et al. 2005) or the root node analysis in a branch-and-bound algorithm. We use

the value of the relaxed problem (1) as an upper bound on the final value and efficiently search

for high-quality feasible solutions to obtain a lower bound, hence the term ‘search-and-bound’. In

Appendix D.3, we describe a tailored branch-and-bound algorithm that can be used to further

tighten the quality of the upper bound and eventually solve (4) to provable optimality. However, the

branch-and-bound trees it generates are highly imbalanced so we expect a very slow convergence

in practice.
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Figure 6 Illustration of our cluster-based search strategy on one 7-day planning instance (Jan 15, 2002). We first

exclude locations that are provably suboptimal (grey region), cluster the remaining area into K clusters

(here, K = 3), and then evaluate one trajectory per cluster (red circle dots). The starting location is

indicated by a diamond at the center of the map.

Algorithm 2: Search-and-Bound Algorithm for Problem (4)

Data: Weighted graph G with dynamic plastic density estimates r0, {Qt}t∈T ;

Initialize: Compute rt for all t∈ T according to (2);

Stage 1: Run Algorithm 1, obtain values V T (s) and solutions path[s] for s∈ ST ;

Stage 2: Search-and-bound;

Initialize upper bound UB =maxs∈ST
V T (s);

Initialize lower bound LB = 0, best solution x̂= 0;

for some specific states s∈ ST do
Get the solution xs← path[s];

(⋆) Compute the path-adjusted reward r|xs ;

if ⟨r|xs ,xs⟩>LB then
Update lower bound LB = ⟨r|xs ,xs⟩;

Update best solution x̂=xs;
end

end

return the solution x̂ and optimality gap (UB−LB)/UB.

4.5. Numerical validation

The adjusted DP Algorithm 2 improves upon taking the solution provided by Algorithm 1 directly

by searching for a better solution in (some) other terminal states s∈ ST .

To assess the benefit from conducting this additional search, we use some of the weather and

plastic ocean data described in Section 5.1. and consider 250 instances of the 7-day routing problem.
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Figure 7 Simulation results comparing the performance of Algorithm 1 and Algorithm 2 (with α= 0.2).

We generate the instances by considering 50 different starting time (the beginning of each week,

except for the first and last week of the year) and 5 different initial locations. Figure 7a represents

the distribution (box plot) of the optimality gaps achieved by Algorithm 1 and Algorithm 2. We

observe that Algorithm 1 achieves an average optimality gap of 9.2%, compared with 6.3% for

Algorithm 2—a 2.9 percentage points or 32% improvement. Note that, since both approaches

consider the same upper bound, this improvement is only due to an improved lower bound, i.e.,

Algorithm 2 finding a higher-quality solution. In addition, evidence on small-scale experiments (see

Appendix D.2) suggests that the solution returnd by Algorithm 2 is often closer to optimality than

what is suggested by the optimality gap due to the upper bound not being tight.

To illustrate the benefit of our algorithm, we focus on one of these 250 instances and represent

on Figure 7b the quantity of plastic collected over the 7 days (56 time periods) by the solution of

Algorithm 1 (blue lines) and Algorithm 2 (orange lines), both when the density vectors are upper

bounded by ⟨r,x⟩ (path-independent, dashed lines) and adjusted for path-dependency (solid lines).

By comparing the dashed lines, we observe that the solution returned by Algorithm 2 is indeed

sub-optimal for the path-independent problem. However, when adjusting for path dependency, the

reward associated with solution of Algorithm 1 is significantly lower than expected (especially for

time periods t ≥ 27), much more than for the solution of Algorithm 2. Eventually, the solution

provided by Algorithm 2 performs significantly better—here, the optimality gap reduces from

24.4% to 4.6%.
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5. Numerical Experiment

In this section, we evaluate our method on one-year weather and plastic density data. After pre-

senting our experimental setting in Section 5.1, we compare the performance of different imple-

mentations of our algorithm in Section 5.2. In Section 5.3, we delve deeper into the differences in

plastic collection efficiency across seasons. Finally, we use our algorithm to investigate the non-

linear relationships between some strategy system design decisions (such as total span or size of

the retention zone) on the overall efficiency in Section 5.4.

5.1. Experimental setting

We work with one year of weather and plastic density data (year 2002 in our data set). The

weather data provides the height and direction of the waves and the wind. The plastic density data

is provided as trajectories of a particle-based fluid dispersal model, as described in Appendix C.

The level of spatial (resp. time) granularity of the data is 8 km (resp. 3 hours), in line with our

discretization. Given a span of 1.8 km, we consider a plastic collection rate α= 20%. The capacity

of the retention zone is fixed to 25 metric tons. We assume that an extraction takes one day to

complete (8 time periods). The wave height needs to be below 2.5 meters during the first 6 hours

for the crane to operate and needs to be below 3.5 meters during at least 12 arbitrary hours for

workers to sort the plastic.

We divide the year into 13 non-overlapping 28-day periods2, which we later refer to as ‘sim-

ulations’. For each simulation, we assume the system starts in the center of the GPGP, whose

coordinates are (31.92◦N, 142.4◦W). Given the propelling speed, the system is able to reach any

point on the boundary of the GPGP from its initial location within 31 days.

We compare the performance of our algorithms with that of The Ocean Cleanup’s current heuris-

tic. For each direction d, we let Lt(ℓ, d) denote the set of locations that are reachable in t steps from

ℓ when looking in the direction of d (here, we associate each direction d with a cone corresponding

to all steering angle within ±22.5◦ of d). We associate each direction with a value:

∑
t∈[T ]

1

|Lt(ℓ, d)|
∑

ℓ′∈Lt(ℓ,d)

rtℓ′

∥ℓ′− ℓ∥22
,

2 Since each 4-week simulation requires 5 weeks of data (because some of our optimization algorithms are forward-
looking and take into account information of the next 7 days), we would need 53 weeks to conduct 13 non-overlapping
28-day simulations. Instead, we start the last experiment one week earlier (on day 329 instead of 336).
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and pick the best feasible direction according to this criterion. In other words, the benchmark goes

in the direction leading to the highest distance-weighted reward. The benchmark does not include

any rule for extraction scheduling so we start an extraction as soon as the system reaches capacity.

If the current weather does not allow it, we replace rewards with wave heights in the above formula

and steer towards the lowest distance-weighted wave height to start an extraction.

We evaluate the performance of four different implementations of Algorithm 2, with different

optimization and implementation horizons: First, we consider solving our longest path problem (4)

for T = 8 time periods only (one day), by solving and implementing the resulting solution (routing

and extraction scheduling) every day. We refer to this implementation as Myopic. To be more

forward looking, we consider using T = 56 time periods instead (one week). At the beginning of each

week, we run Algorithm 2, obtain a solution, and implement it for the following 7 days (Week). In

these two variants, the planning horizon (used in the definition of the optimization problem) and

the implementation horizon are the same. However, they do not have to be. For example, one can

optimize over the next 7 days (T = 56) but only implement the first 8 time periods of the solution.

In particular, we can use a rolling horizon by solving each day a 7-day longest path problem (4) and

implementing its solution for the first day (Week-Rolling). Alternatively, to navigate the system

during a week, we can use a folding (or shrinking) horizon by finding the longest path ‘until the

end of the week’ (i.e., over 7 days in the beginning, 6 days after the first day,...) and implementing

its solution for the first day (Week-Folding).

Note that before resolving an optimization problem—which happens every day for the Myopic,

Week-Rolling and Week-Folding implementations, and every week for Week—we update our plastic

density estimates based on the past-day trajectory and collection of the system. Hence, resolving

can also be seen as a way to mitigate path-dependency issues described in Section 4. We decided not

to consider optimization models over horizons longer than 7 days for two reasons: unavailability of

reliable weather forecast for more-than-7-day-ahead predictions and computational considerations.

5.2. Overall improvement in plastic collection rate

Figure 8a represents the weekly quantity of plastic collected by each method, averaged over our 13

four-week simulations.

Based on these results, we make the following observations: First, Figure 8a illustrates the edge of

optimization, with all methods significantly improving over the benchmark—as identified formally
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Figure 8 Weekly quantity of plastic collected, for the benchmark and each of the optimization-based approaches

by paired t-test with ≤ 10−5 p-values in Table E.1. Among all methods, Week-Rolling collects

the most plastic (65.4 tons/week), which is around 1.67 times more than the benchmark (39.0

tons/week). Among all optimization-based approaches, Myopic and Week perform the worst and

comparably. This suggests that the benefit of being forward-looking of the Week implementation

is counter balanced by the path dependency issue (to which Week is more sensitive because it

re-optimizes every week only). Accordingly, methods that re-optimize every day and consider a

longer planning horizon, namely Week-Folding and Week-Rolling, have a clear edge.

While the performances reported in Figure 8a are averaged over the 13 simulations, Figure 8b

reports the performance for each of the 13 simulations, where each simulation is identified by

its start date (in month). Figure 8b confirms the main findings from Figure 8a but also exhibits

an interesting behavior with respect to month: We observe that the quantity of plastic collected

(by any method) is higher in summer months (April-August) than in winter months (November-

February) and we observe that the relative benefit from our optimization methods (compared with

the benchmark) is higher during these winter months. We investigate the mechanisms driving this

pattern in the coming section.

5.3. Heterogeneity across seasons and the impact of extraction scheduling

Figure 8b raises the question of the impact of season (or time of the year) on the plastic collection

efficiency. We should emphasize from the start that the behavior we observe is not driven by

differences in the overall plastic density during the year. Values of plastic density continuously

increase over the year (roughly by 10% in our 2002 data, by around 2% nowadays) but do not

exhibit this inverted U-shape (see Figure E.3a in Appendix E.2).
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Figure 9 Average wave height in the GPGP across the year 2002

If plastic density (i.e., the objective of our optimization problem) cannot explain this behavior,

it is natural to consider the impact of weather (which drives most of the operational constraints)

on the heterogeneous performance across seasons. Figure 9 represents the average wave height in

the GPGP (together with upper and lower quartiles in dashed lines) for each month. We observe

that wave height follows the same pattern as the quantity of plastic collected, with lower waves

experienced in the middle of the year (April-August) and higher waves during November-February.

High waves affect the collection process in two ways. First, the system cannot operate when the

wave height exceeds 6 meters. Hence, the average ‘collectable’ plastic density is much lower in

winter than in summer (see Figure E.3b in Appendix E.2). Furthermore, extractions require the

waves to be below 2.5 meters for the first 6 hours, and below 3.5 meters for 12 hours. Hence,

weather and its impact on the feasibility of extractions also contributes to the behavior observed

in Figure 8b.

To confirm this intuition, we quantify the time spent by the system while waiting to extract. At

any point in time, the system can be in one of three phases: it can be actively collecting plastic,

it can be undergoing an extraction, or it can be idle (i.e., unable to collect plastic because it has

reached capacity but unable to start an extraction either because of weather). For each 4-week

simulation, we compute the number of days the system spent in collecting, extracting (which is

equivalent to the number of extractions performed), and staying idle. For each simulation, the above

three numbers should add up to 28 days. We averaged these numbers per season (winter/summer),

where we define ‘winter’ as the first three and last three simulations and ‘summer’ as the remaining

7 ones. Figure 10 reports these metrics for the benchmark and Week-Rolling methods in both

winter months (Figure 10a) and summer months (Figure 10b).
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Figure 10 Number of days spent on collection, extraction and idle per 4-week simulation, for the benchmark and

Week-Rolling methods. Results are aggregated over the winter (left panel) and summer (right panel)

months.

First, we observe that, in both winter and summer, Week-Rolling spends less time collecting

than the benchmark. Given that Week-Rolling collects more plastic (67% more on average), this

indicates that our approach is more efficient: it collects more in less time. Comparing Figure 10a

and Figure 10b, we observe that idle time is significantly higher in winter, confirming the fact that

weather conditions limit the ability to extract (hence, to collect further) during winter. Surprisingly,

Week-Rolling does not reduce total idle time in winter (around 12–13 days out of 28 for both

method). However, Week-Rolling performs twice as many extractions, around 6.5 times on average

compared with 2.8 times for the benchmark (which aligns with the increase in quantity of plastic

collected), so Week-Rolling experiences a much lower idle time per extraction than the benchmark.

The above observations highlight the importance of jointly finding a collection route and a

schedule for the extractions for overall efficiency. On this matter, our optimization approach that

can explicitly account for weather-related constraints experiences greater benefits in the winter,

when the ability to extract constitutes the main bottleneck.

5.4. Designing a new system: is bigger better?

In Section 5.2, we show that with optimization, we can improve the collection speed from 40

tons/week to 60+ tons/week, using their current system. In this section, we use our optimization

model to help answer strategic dimensioning decision for the next-generation system. The Ocean

Cleanup was first considering increasing the span of the system from 0.6 ∼ 0.8 km (α ≈ 0.1) to

1.6∼ 1.8 km (α≈ 0.2), without increasing the size of the retention zone (25 tons). Indeed, the size
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Figure 11 Weekly quantity of plastic collected by DP (Rolling) under different α. Results are aggregated over

the winter (blue solid line) and summer (orange dashed line) months, and with (left panel) or without

(right panel) extraction.

of the retention zone is partially constrained in practice by the size of the ship used to store and

sort the plastic collected.

Figure 11 represents the weekly quantity of plastic collected in winter (solid blue lines) and

summer (dash orange lines), for increasing values of α, in the case of a 25-ton capacity (left panel,

Figure 11a) and an infinite capacity (right panel, Figure 11b). Without capacity constraints from

the retention zone, one expects the total quantity of plastic collected to depend linearly in the

span of the system α, as displayed in Figure 11b. However, with a finite capacity (Figure 11a),

we observe (i) an overall lower quantity of plastic collected (which is due to the need to extract

and the fact that we stop collection during extraction), and (ii) a strong concave dependency of

the plastic collected on α. Indeed, by doubling the span size from α= 0.1 to α= 0.2, the weekly

collection increases by 26% in summer (from 66.7 to 84.0 tons/week) and by 20% only in winter

(from 36.7 to 44.3 tons/week). Moreover, increasing the span beyond α = 0.25 (i.e., 2 km span)

provides barely any improvement.

Intuitively, this different behavior across seasons is due to the fact that a larger span requires

more frequent extractions, which are very sensitive to weather conditions. The comparison between

Figure 11a and Figure 11b highlights the impact of having a finite-capacity retention zone on

the overall performance. In the future, the difficulty to extract could largely erode the benefit of

having a larger system. This leads us to the next question: how to design a new system with better

extraction?
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Figure 12 Weekly collections of DP (Rolling) with different unit extraction times. Results are aggregated over

the winter (blue solid line) and summer (orange dashed line) months.

There are several ways to improve the current extraction process. One solution could be to reduce

the unit extraction time, namely, the time spent per extraction. In practice, this could be achieved

via more efficient extraction operations. For example, one could first empty the plastic from the

retention zone on the deck (taking approximatively 6 hours), put the system back into the water,

and sort the plastic while resuming the plastic collection Another solution could be to increase the

total capacity of the retention zone, which we do not discuss in this paper.

Figure 12 represents the weekly quantity of plastic collected in winter (solid blue lines) and

summer (dash orange lines), for increasing values of unit extraction time, in the case of a 25-ton

capacity. By reducing the time per extraction from 1 day (current practice) to 0.25 days (or 6

hours), the weekly collection increases by 101% in summer (84.0 to 168.6 tons/week) and by 61%

in winter (44.3 to 71.4 tons/week). Observe, in comparison, that the potential improvement by

further increasing the span size beyond α= 0.2 (Figure 11a) is less than 12%. Reducing the unit

extraction time demonstrates a greater potential for impact, both in winter and summer.

We emphasize that the above improvement solely comes from a shorter extraction time, not from

a lower impact of weather constraints since we kept, in our implementation, the same weather con-

straints for extraction (described in Appendix A.1) irrespective of the extraction time. In practice,

shorter extraction time might also translate into less stringent weather constraints, which could in

turn provide additional benefits.
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6. Conclusion

Our oceans are being threatened by the millions of tons of plastic that have been emitted over the

recent decades. To limit future harm to marine ecosystems and activities, we need to clean up oceans

from plastic, as quickly as possible. To this end, we develop a graph-based model and formulate

the problem of routing a plastic-collecting system in the GPGP to maximize the quantity of plastic

encountered as a longest path problem. However, due to the plastic dynamics and the direct impact

of collection on these dynamics, our resulting longest path problem (4) is non-convex and non-

separable over edges. To deal with these computational difficulties, we propose to relax the reward

dynamics and solve large-scale instances of this relaxation in linear time using a DP algorithm.

Then, we obtain near-optimal solutions to our original problem, together with certificates of near

optimality, by building an efficient search algorithm based on the DP algorithm (and not only on

its optimal solution).

On one-year weather and plastic density data, we observe that our optimization approaches

increase the quantity of plastic collected by 67% compared with the status quo, thus accelerating

the path to plastic-free oceans. We also leverage our optimization algorithms to explore the non-

linear relationships between system characteristics and system performance. For example, because

of difficulties to extract (i.e., empty the capacity of the system) in winter, we find that increasing

the span of the system beyond 1.8 km will have barely any impact on collection efficiency in winter.

For our current application, the main concern and area for future research is to account for

uncertainty in weather predictions and plastic dynamics. In particular, we are currently investi-

gating whether collection of real-world data by drones or satellites could help quantify uncertainty

and lead to robust versions of our longest path problem. More broadly, we are excited to study

whether whether the class of longest path problems we identify in (4) could find other applications,

as a model for operations with nature dynamics.
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This appendix will be published as a separate Electronic Companion.

Appendix A: Details on the Graph-Based Optimization Formulation

A.1. List of all operational and weather constraints

In Table A.1, we summarize all the operational and weather constraints The Ocean Cleanup

encountered in their practice.

Constraints Description

Speed The propelling speed cannot exceed 1.5 knots.
Angle The system can turn at most 45◦ within 3 hours.
Wave (direction) If wave height > 4.5m, head against the direction of the wave.
Wave (screen) If wave height > 6m, the screen cannot work, no plastic is collected.
Wave (extraction 1) For the first 6 hours of each extraction, wave height ≤ 2.5m.
Wave (extraction 2) For the remaining 18 hours of extraction, at least 12 hours with height ≤ 3.5m.
Wind (extraction) If wind speeds > 25 knots, the crane cannot work.

Table A.1 Operational and weather constraints for The Ocean Cleanup’s system 002/B

A.2. Extended graph representation for modeling extraction scheduling decisions

In Section 3.1, we presented a graph-based modeling to describe the trajectory of the system as a

path in an appropriate graph. In this section, we expand our description of the state of the system

to incorporate the decision of extraction scheduling, while maintaining our efficient longest path

interpretation. As described in Section 1.1, the plastic collected accumulates in a retention zone

with fixed capacity and that needs to be emptied regularly. In addition, this emptying process,

called extraction, requires the weather condition to be favorable (in particular, wave height need

to be below 2.5 meters). Accordingly, we need to enrich the state space to include the type of

activity the system is performing (collection or extraction) as well as an indication of the load of

the retention zone.

The system can perform two types of activity: it can either be collecting plastic or extracting

plastic from the retention zone. Actually, because the system cannot extract when weather condi-

tions are unfavorable, the system can also be idle, i.e., not actively collecting because the retention

zone is full but not extracting either. Accordingly, we define five possible activities, denoted V =

{vc1, vi∅, vi1, ve∅}, where the subscript indicates the propelling speed of the system (∅ for not moving

and 1 for moving at normal speed) and the superscript indicates the activity (collection, idle, and

extraction). Here, we assume that the system does not move during an extraction (because of

operations). However, when idle, it can either stay at the same location and wait for the weather
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to improve or move towards an area with nicer weather. We denote ∆Te the time required for

extraction (in time periods). By construction, we will ensure that the status ve∅ corresponds to the

extraction being finished, since complexity of the extraction process does not provide the flexibility

to perform partial extractions. In addition, the time ∆Te includes extraction and time needed to

re-direct the system so the no-sharp-turn constraint does not apply between the steering directions

before and after extraction.

In addition to v, we introduce a state dimension to capture the current load of the retention zone.

More precisely, we divide the capacity of the retention zone into C increments, corresponding to

the typical quantity of plastic collected during one time period. Hence, we can introduce a variable

c∈ C := {0,1, . . . ,C} capturing load of the retention zone.

With these additional variables, we can describe the state of the system as a 5-tuple s =

(ℓ, d, v, c, t) ∈ L × D × V × C × T and we can represent the set of all possible joint trajectories

and extraction schedules as a path in a graph, whose nodes and edges are constructed recursively

thanks to a successor operator. For this state s, an admissible next state s′ = (ℓ′, d′, v′, c′, t′) should

satisfy the following constraints:

• If the retention zone is empty and the system is currently extracting (and is done emptying),

then the system resumes collection and can go in any direction. Formally, if c= 0 and v = ve∅, we

have s′ = (ℓ′, d′, vc1,1, t+ 1) where (ℓ′, d′) satisfies all constraints defining succ((ℓ, d, t)) except for

the no-sharp-turn constraint.

• If the retention zone is not full and the system is currently collecting, then the system can

either continue collecting (and obey the same constraints as those described in Section 3.1) or

proactively start an extraction (if feasible). Formally, if c < C and v = vc1, we have either s′ =

(ℓ′, d′, vc1, c+1, t+1) with (ℓ′, d′, t+1)∈ succ((ℓ, d, t)) or s′ = (ℓ, d, ve0,0, t+∆Te) if possible to empty

at location ℓ.

• If the retention zone is currently full, then the next state can either be idle or extraction.

Formally, if c= C, then s′ must fall in one of the three cases: (ℓ, d, vi∅,C, t+1), (ℓ′, d′, vi1,C, t+1)

with (ℓ′, d′, t+1)∈ succ((ℓ, d, t)), or (ℓ, d, ve∅,0, t+∆Te) if extraction is possible at location ℓ.

As displayed in Figure A.1, compared with the simple model presented in Section 3.1, this extended

state space and successor operator allows the system to “jump” some time periods: when deciding

to extract, we directly connect the state of the system at the beginning of the extraction with the

state of the system after extraction, i.e., ∆Te time periods later. Nonetheless, the resulting graph
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((2,1), ↘, 𝑣௜
௖, 𝑐+1, 𝑡+1)

((1, 1), ↘, 𝑣௜
௖, c, 𝑡)

((1, 1), ↘, 𝑣∅
௘, 0, 𝑡′)

((2,2), ↘, 𝑣௜
௖, 𝑐+1, 𝑡+1)

((1,2), →, 𝑣௜
௖, 𝑐+1, 𝑡+1)

Figure A.1 Successor of a state in a graph that includes both collection and extraction

G conserves the good properties we leverage in our algorithm: First, G is a DAG, because all edges

are of the form (s, s′)∈ St×St′ with t′ > t, hence ensuring the correctness of the DP algorithm for

longest path problems. Second, for a given state s, its number of successors (or predecessors) is

uniformly bounded by a constant.

A.3. Longest path and network flow optimization problems

Mathematically, the longest path problem (1) can be formulated as a mixed-integer optimization

problem by introducing binary variables xt
s ∈ {0,1} indicating whether the system is in state s at

time t. The resulting optimization writes as follows:

max
x∈X

∑
t∈T

∑
s∈St

rtsx
t
s,

with

X :=

{
x∈ {0,1}S

∣∣∣∣∑s∈St
xt
s = 1, ∀ t∈ T ,∑

s′∈succ(s) x
t+1
s′ ≥ xt

s, ∀ t∈ T , s∈ St

}
.

Despite its compactness, we should emphasize that this optimization formulation is not the most

computationally efficient because of the integrality constraints. Alternatively, the optimization

problem above can be seen as a special case of a network flow optimization problem for which ideal

formulations are well known.

Formally, let us now view any sequence of states {st}t∈T as binary flow variables f ∈ {0,1}E

where fe = 1 if and only if e= (st, st+1) for some t∈ T . In other words, f indicates the transitions
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that the system goes through, while x is encoding the system states. Naturally, one can recover

the flow variables from the state variables, and vice versa, via the relations

fs,s′ = xt
sx

t+1
s′ , ∀(s, s′)∈ Et,

xt
s =

∑
s′∈succ(s)

fs,s′ , ∀s∈ St.

With these notations, the DP algorithm, Algorithm 1, can solve any optimization problem of the

form

max
f∈F

∑
e∈E

wefe. (7)

where F is the set of admissible binary flows in G:

F :=

{
f ∈ {0,1}E

∣∣∣∣∑(s,s′)∈E0 fs,s′ = 1,∑
s′:s∈succ(s′) fs′,s =

∑
s′∈succ(s) fs,s′ ∀ t∈ T , s∈ St

}
.

The first constraint is the initial condition and ensures that the path starts at some state s ∈ S0.

The second set of constraints corresponds to the common flow conservation constraints, ensuring

that, at each node s, inflow equals outflow. Together, they imply that fe ≤ 1 for any e ∈ E . So,

the binary constraints can be replaced by an integrality constraint, f ∈ZE
+. Furthermore, it is well

known that the polytope of unconstrained flows in a graph is integral, i.e., its extreme points are

integral flows. Hence, without loss of optimality, we can assume that the optimization problem (1)

occurs over the convex set

F =

{
f ∈RE

+

∣∣∣∣∑(s,s′)∈E0 fs,s′ = 1,∑
s′:s∈succ(s′) fs′,s =

∑
s′∈succ(s) fs,s′ ∀ t∈ T , s∈ St

}
.

Appendix B: Analytical analysis of the path-dependent reward

In this section, we supplement the analysis of path-dependent rewards from Section 4.1, by eliciting

the dynamics operatorQt in (4), the proof of Proposition 2, and deriving the second-order expansion

(in α) of the path-dependent reward r|x.

B.1. Path dependency for state-based rewards

In our optimization formulations, we use binary variables that are defined over states, x̃∈ {0,1}∪tSt ,

while plastic and reward dynamics are naturally expressed using location indicators xt ∈ {0,1}L—

for clarity, in this section, we will systematically use ·̃ to indicate variables defined at a state level.

The latter can be recovered from the former via the linear relationship

xt
ℓ =

∑
s′=(ℓ′,d′,t)∈St:ℓ′=ℓ

x̃t
s′
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which we write in matrix form xt =W tx̃t for some matrix W t ∈ {0,1}L×St . With these notations,

the reward dynamics (3) can be expressed as a function of x̃ as

rt+1
|x0:t =Qt

[
rt
|x0:t−1 −αrt

|x0:t−1 ◦ (W tx̃t)
]
.

We now need to map rewards defined for each locations into rewards defined for each state. For

example, if we assign to each state the reward associated with its location, we have r̃ = (W t)⊤r.

In practice, we consider a slightly different mapping where the reward for a state equals the reward

of its location if the state is collecting, and 0 if the state is idle or extraction. In any case, we

have a linear mapping of the form r̃=V tr with V t ∈ {0,1}St×L and V t ≤ (W t+1)⊤. Similarly, we

can obtain the reverse mapping r =U tr̃ with U ∈ {0,1}L×St , i.e., for each location ℓ, U t maps ℓ

with one state s∈ St whose reward is the reward at location ℓ (e.g., a collecting state currently at

location ℓ).

Consequently, we are interested in maximizing∑
t∈T

∑
s∈St

r̃ts|x̃0:t−1 x̃
t
s,

where the path-dependent rewards (defined at a state-level) r̃t+1
|x̃0:t evolve according to the following

dynamics:

r̃t+1
|x̃0:t =V t+1 Qt

[
U tr̃t

|x̃0:t−1 −α
(
U tr̃t

|x̃0:t−1

)
◦ (W tx̃t)

]
︸ ︷︷ ︸

rt+1

|x0:t

=:Qt(r̃t
|x̃0:t−1 , x̃

t).

Finally, observe that the matrices V t have non-negative entries. Accordingly, it preserves vec-

tor ordering, i.e., r1 ≤ r2 =⇒ V tr1 ≤ V tr2. Hence, upper and lower bounds on path-dependent

rewards in Proposition 2 directly translate to rewards defined for each state.

B.2. Proof of Proposition 2

Proof of Proposition 2 We prove the result by induction. For t= 0, r1
|x0:0 = r1−αQ0 (r0 ◦x0).

Hence, in this case, r1
|x0:0 is exactly equal to the lower bound in (6). Since Q0, r0, and x0 have

non-negative entries, Q0 (r0 ◦x0)≥ 0 and the upper bound in (6) holds as well.

Let us now assume that the bounds (6) hold for some t≥ 0 and let us show that they also hold

for t+1.

For the upper bound,

rt+2
|x0:t+1 =Qt+1rt+1

|x0:t −αQt+1
(
rt+1
|x0:t ◦xt+1

)
≤Qt+1rt+1

|x0:t ≤Qt+1rt+1 = rt+2.
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For the lower bound

rt+2
|x0:t+1 =Qt+1

[
rt+1
|x0:t ◦

(
1−αxt+1

)]
≥Qt+1

[(
rt+1−α

∑
0≤t1≤t

(Qt× · · ·×Qt1) (rt1 ◦xt1)

)
◦
(
1−αxt+1

)]
=Qt+1rt+1−αQt+1

∑
0≤t1≤t

(Qt× · · ·×Qt1) (rt1 ◦xt1)−αQt+1
(
rt+1 ◦xt+1

)
+α2 . . .︸︷︷︸

≥0

≥ rt+2−α
∑

0≤t1≤t+1

Qt+1× (Qt× · · ·×Qt1) (rt1 ◦xt1) ,

which concludes the proof. □

B.3. Second-order expansion of the path-dependent reward

Proposition 1 provides the first-order expansion (in α) of r|x in the general case. Compared with

the case of static plastic (Lemma 1), the first-order term involves cumulative products of Qt’s

to account for plastic movements over time. In this section, for any s ≥ t, we denote Qs:t :=

Qs×Qs−1×· · ·×Qt. Hence, Qt captures the plastic dynamics between time t and t+1, while Qs:t

captures the plastic dynamics from t to s+1. With these notations, we have:

Proposition 3. The second-order expansion of the path-dependent reward x is given by:

rt+1
|x0:t =rt+1

−α
∑

0≤t1≤t

Qt:t1 (rt1 ◦xt1)

+α2
∑

0≤t2<t1≤t

Qt:t1
{[
Qt1−1:t2 (rt2 ◦xt2)

]
◦xt1

}
+O(α3).

Proof of Proposition 3 When t = 0, we already shown that the first-order expansion is exact

and the second-order correction is 0, so the result holds.

Let us assume that the above expansion holds for rt+1
|x0:t , for some t≥ 0, then we have:

rt+2
|x0:t+1 =Qt+1rt+1

|x0:t −αQt+1
(
rt+1
|x0:t ◦x

t+1
)
.

We proceed for each term separately. The expansion of Qt+1rt+1
|x0:t is simply that of rt+1

|x0:t multiplied

by Qt+1, i.e.,

Qt+1r̃t+1
|x0:t = Qt+1rt+1 −αQt+1

∑
0≤t1≤tQ

t:t1 (rt1 ◦xt1)

+α2Qt+1
∑

0≤t2<t1≤tQ
t:t1 {[Qt1−1:t2 (rt2 ◦xt2)] ◦xt1}+O(α3)

= rt+2 −α
∑

0≤t1<t+1Q
(t+1):t1 (rt1 ◦xt1)

+α2
∑

0≤t2<t1<t+1Q
(t+1):t1 {[Qt1−1:t2 (rt2 ◦xt2)] ◦xt1}+O(α3).
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The second-order expansion (in α) of αQt+1
(
rt+1
|x0:t ◦x

t+1
)
can be obtained by using the first-

order expansion of rt+1
|x0:t . We have

αQt+1
(
rt+1
|x0:t ◦x

t+1
)
= αQt+1

([
rt+1−α

∑
0≤t1≤t

Qt:t1 (rt1 ◦xt1)+O(α2)

]
◦xt+1

)
= αQt+1

(
rt+1 ◦xt+1

)
−α2

∑
0≤t1≤t

Qt+1
{
[Qt:t1 (rt1 ◦xt1)] ◦xt+1

}
+O(α3).

Combining the two expansions yield the desired result. □

We see that the second-order term follows the same counting intuition as in the static case, with

matrices Qt accounting for plastic particle movements. At time t1, to count the plastic particles

already encountered at an earlier time t2, one needs to account for their potential movements

between these two time steps. Qt1−1:t2 map plastic locations at time t1 to locations at time t2,

hence the Hadamard product between Qt1−1:t2(rt2 ◦xt2) and xt1 .

Appendix C: Efficient Computations of Plastic Dynamics

In Section 4 we introduce the dynamics of plastic movement and how they are affected by the

history collection. In this section, we describe how these predictions of plastic dynamics are stored

in practice, and how the inputs to our optimization model can be efficiently computed.

C.1. Data set description

Plastic density data is provided by describing the trajectory of individual plastic ‘particles’, where

a particle is a discretization unit for the fluid mechanical model. This description is referred to

as a Lagrangian description. Our one-year plastic data contains the trajectory of N = 1,212,613

particles, discretized over T equally-spaced intervals. For example, the original model used a 1-

day discretization timestep (T = 365), which we extended to a 3-hour discretization timestep via

interpolation T = 365× 8). Eventually, the latitude and longitude of all particles are stored in two

N ×T arrays, which we denote as matrices Lo and La.

For any location ℓ (defined as an 8×8 km region) and any time t, we can efficiently identify the

set of particles present in this location at that time by filtering the rows of Lo and La, i.e., we

can compute

Pt
ℓ := {n∈ [N ] : (Lan,t,Lon,t)∈ ℓ} ,

where (Lan,t,Lon,t)∈ ℓ means that particle n is in location ℓ. Observe that these sets {Pt
ℓ}ℓ∈L, for

a fixed t, can all be computed simultaneously in O(N) operations, by doing a single pass through

all particles n∈ [N ].
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C.2. Computation of raw plastic density map

Based on the data set described above, our first task is to compute the raw plastic density map

for the whole year, without considering any history collection. To do so, we can simply count the

number of particles in each location at each time, i.e.,

rtℓ =
∣∣Pt

ℓ

∣∣×weight factor,

where the weight factor simply converts a number of particle into a mass of plastic. As discussed

above, for a given time t, the entire map rt can be computed in O(N) operations. So, we obtain

the T maps {rt}t∈[T ] in O(NT ) time.

Alternatively, one could have computed r0, in O(N) time, and the transition matrices {Qt}t∈[T ].

This is, however, significantly more time consuming.

Indeed, we can compute the element Qt
ℓ,ℓ′ by computing the ratio of particles that move from ℓ

to ℓ′ between t and t+1:

Qt
ℓ′,ℓ =

|Pt
ℓ ∩Pt+1

ℓ′ |
|Pt

ℓ |
.

Computing a column of Qt, {Qt
ℓ′,ℓ}ℓ′∈L takes O(N) operations so computing the full matrix

takes O(N |L|). Accordingly, computing the density maps using the transition probability matrices

{Qt}t∈[T ] requires O(N |L|T ) iterations, where |L| ≈ 105.

C.3. Computation of path-dependent plastic density map

Compared to the raw map, it is more difficult to compute the path-dependent density map. Intu-

itively, we need to consider the effect of historical collection on the multi-period future. Mathemat-

ically, the reward decomposition described in Proposition 1 and Proposition 3 requires multiple

computations between Qt:t1 =Qt× · · ·×Qt1 , x, and α. To solve that, we propose two ways:

1. First, we can pre-compute r0 and {Qt}t∈[T ] and then recursively compute rt
|x0:t according to

(3). This approach requires a number of iteration in the order of O(N |L|T + |L|2T ).

2. Alternatively, we can use the expansion presented in Propositions 1–3 and compute each

term sequentially. The zero-order term is simply the original density maps, without any collection,

and can be computed in O(NT ) time. Then, for the first-order term, we can compute the term

Qt:t1(rt1 ◦xt1) directly, without pre-computing the matrices Qt individually. Indeed, rt1 ◦xt1 is a

vector with only one non-zero element, equal to |Pt1
ℓ1
|, where ℓ1 denotes the unique location such
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that xt1
ℓ > 0. Correspondingly, Qt:t1(rt1 ◦xt1) represents the vector of locations at time t of plastic

particles that were in ℓ1 at time t1, i.e.,

(Qt:t1(rt1 ◦xt1))ℓ = |Pt1
ℓ1
∩Pt

ℓ}|×weight factor.

Hence, each correction term (Qt:t1(rt1 ◦ xt1)) can be computed in O(N) operations. Altogether,

we can compute the first-order approximation for the path-adjusted rewards in O(NT ). We can

proceed analogously for the higher-order correction terms, as presented in Section 4.3. However, it

becomes prohibitive for k > 1. On the positive side, truncating our expansion at an order k < T is

guaranteed to provide either a lower or an upper bound on the actual path-dependent reward.

3. Finally, we propose a faster approximation which relies on the efficient particle-level descrip-

tion of plastic dynamics and assigning dynamic weights to the particles. Formally, we assign each

particle with a weight wt
n(x) (we will later drop the dependency on x for concision) such that

the weight of the particle is divided by α each time it is seen by the system. Mathematically, we

compute

w0
n(x) = 1, ∀n∈ [N ],

wt+1
n (x) =

{
αwt

n(x), if n∈Pt
ℓt
with ℓt s.t. x

t
ℓt
> 0,

wt
n(x), otherwise.

With these notations, we can count the particles in a given location ℓ by weighting them according

to their weight, i.e.,

|Pt
ℓ |w :=

∑
n∈[N ] : (Lan,t,Lon,t)∈ℓ

wn,

and approximate the path-dependent plastic density at time t as

rt+1
ℓ|x0:t ≈ |Pt+1

ℓ |wt+1(x)×weight factor.

The above computations can be efficiently executed in vectorized manner, therefore reducing the

computational burden to compute path-dependent reward down to O(NT ).

Appendix D: Solving the Path-Dependent Longest Path Problem

In this section, we provide further details on how to solve the path-dependent longest path problem

(4). First, we describe and compare different strategies for searching for a high-quality solution

in Algorithm 2. Then, we describe a valid branching strategy that could theoretically solve the

problem to provable optimality, although its slow convergence makes it practically irrelevant.
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D.1. Comparison of search-and-bound strategies

Recall that in the search-and-bound strategy (Algorithm 2), we search through the terminal states

of the DP algorithm (Algorithm 1) to find high-quality trajectories. For a given terminal state s,

the terminal value provided by Algorithm 1, V T (s), can be used as a proxy of the quality of the

best trajectory that terminates in state s. However, computing the actual path-dependent reward,

i.e., the quantity we are interested in, is time-consuming. Hence, we are interested in identifying a

few terminal states s ∈ ST and only evaluating the objective function at these states to make the

search more efficient.

A first strategy is to search through s ∈ ST by decreasing order of V T (s). To control for com-

putational complexity, we can, for example, search through the top-K states only, with K an

hyper-parameter controlling the number of path-dependent reward calculations (step (⋆) in Algo-

rithm 2). This strategy, however, may compare trajectories that are very similar. For illustration

purposes, Figure D.1a displays the map of V T (s) values on one problem instance (the same instance

as that of Figure 7b). The red dots indicate the 30 best locations, where, for each location, we

consider the highest value of V T (s), across all terminal states associated with this location. We

observe that all top-30 locations are geographically concentrated. Hence, these terminal locations

are likely associated with very similar trajectories, leading to very similar path-dependent rewards.

In addition, we should keep in mind that one location is associated with multiple states s. So, when

searching through the top-K states s, one can compare trajectories that are even more similar (they

can end at the same location). All together, while this strategy can improve upon the solution of

the DP algorithm (without path-dependency), the improvement will likely be marginal for small

values of K.

Alternatively, we propose to force a search through states/locations that are geographically

dispersed, as displayed in Figure D.1b. First, we analyze the solution returned by Algorithm 1,

compute its path-dependent reward, and obtain a valid lower bound on (4), LB. With this lower

bound, we can safely exclude all states s such that V T (s)< LB (corresponding to the grey area

in Figure D.1b). Then, we apply a K-means algorithm to partition the remaining states (the

‘active’ states) into K disjoint subsets, {s : V T (s)≥LB}=∪K
k=1S

(k)
T . For the clustering algorithm,

we represent each state by a 2-dimensional vector corresponding to its associated latitude and

longitude. Finally, for each region S(k)
T , we inspect only the state with the highest terminal value,

i.e., in argmax
s∈S(k)

T

V T (s). In our example, this process, which we formally describe in Algorithm 2
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(a) Heatmap of the V T (s) values; The states corre-
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(b) Cluster-K search (K = 3) with the 3
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Figure D.1 Comparing top-K (left panel) and cluster-K (right panel) search strategies on one 7-day planning

instance (Jan 15, 2002). The starting location is indicated by a diamond (30.76◦N, 138.44◦W).

– Stage 2, inspects the 3 red locations displayed in Figure D.1b. Compared to the top-K approach

illustrated in Figure D.1a, this procedure searches through locations that are more dispersed. We

represent the path-dependent reward for each inspected location in Figure D.1b. Compared to

the trajectory with the highest V T (s), the best trajectory we found (230 tons) only ranked 37th

according to its V T (s) value but increased the weekly collection by 18% (from 231 to 196 tons).

We now compare both approaches numerically by applying them on 5× 50 = 250 instances of

7-day routing (the same instances as those used in Section 4.5, 5 different starting locations, 50

weeks). The upper bound is the same for both approaches and obtained from the DP relaxation.

We compute the optimality gap (which is the same as comparing the quality of the solution found)

obtained by each approach, the top-K search and the cluster-K search, for different values of K.

We report the box plot of the optimality gap for each approach in Figure D.2.

As expected, searching through multiple terminal states improves upon the solution of the DP

relaxation. We observe that the Cluster-K search strategy is more efficient than the top-K one.

Indeed, for the same search budget K, cluster-K achieves lower optimality gaps. For example, Top-

12 achieves a 7.4% gap on average, while Cluster-12 achieves 6.3% on average —a 1.1-percentage

point (or 17%) improvement. Cluster-3 (7.1% average gap) evaluates 4 times less trajectories than

Top-12, yet achieves comparable performance. In addition, we observe that the standard deviation

of the gap is smaller for cluster-K (4.6%–5.6%) than for top-K (6.2%–6.5%), indicating that the
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Algorithm 2 – Stage 2: Cluster-K search for Algorithm 2

Stage 2: Search-and-bound;

Find s⋆ ∈ argmaxs∈ST
V T (s) and x⋆← path[s⋆] ;

Initialize UB = V T (s⋆);

Compute r|x⋆ and initialize LB = ⟨r|x⋆ ,x⋆⟩;

Apply K-means clustering and construct the partition {s : V T (s)≥LB}=∪K
k=1S

(k)
T ;

for k= 1, . . . , k do
Get s(k) ∈ argmax

s∈S(k)
T

V T (s);

Define x(k)← path[s(k)];

Compute the path-adjusted reward r|x(k) ;

if ⟨r|x(k) ,x(k)⟩>LB then

Update lower bound LB = ⟨r|x(k) ,x(k)⟩;

Update best solution x̂=x(k);
end

end

DP
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 =6.9%

Top-6
 =7.8%
 =6.5%

Top-12
 =7.4%
 =6.2%

Cluster-3
 =7.1%
 =5.6%

Cluster-6
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 =4.6%

 

0%

5%

10%

15%

20%

25%

30%

35%

O
pt

im
al

ity
 g

ap

Figure D.2 Distribution of the optimality gap achieved by different search-and-bound approaches: Algorithm 1,

top-K search, and cluster-K search. Results are obtained 250 instances of our 7-day routing problem.

We also report the mean (µ) and standard deviation (σ) of each distribution.

performances of cluster-K are also more reliable. Therefore, we use the Cluster-K search with

K = 12 in our implementation.



den Hertog et al.: Towards Plastic-Free Oceans
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 49

D.2. Evaluation of the ‘true’ performance of Algorithm 2 on small instances

The optimality gap returned by Algorithm 2 is a conservative estimate of the sub-optimality of

the returned solution. Indeed, it captures both the distance of the returned solution to the optimal

solution (in terms of objective value) and the relaxation gap (i.e., the difference between the upper-

bound provided by the path-independent relaxation and the true objective value). Accordingly,

in this section, we investigate numerically whether the optimality gaps returned by Algorithm 2

are primarily driven by the quality of the solution or by the quality of the relaxation (i.e., the

certificate of optimality). To do so, we apply Algorithm 2 on small instances where the optimal

solution can be computed exactly.

The path-dependent longest path problem (4) can be formulated as a mixed-integer optimization

(MIO) problem

max
x∈X ,η,ρ≥0,

∑
t∈T

∑
s∈St

ηt
s s.t. ρt+1 =Qt (ρt−αηt) ,

ηt ≤ ρt,

ηt ≤Mxt,

where the additional variable ρt encodes for the vector of path-dependent rewards rt
|x0:t and ηt for

the component-wise product rt
|x0:t ◦xt = ρt ◦xt. However, this formulation is notably inefficient to

solve for two reasons. First, unlike the DP Algorithm 1, it requires the computation of the matrices

Qt for all time periods t, which is time-consuming (see Appendix C for a discussion). Second, it

involves a large number of binary variables (the location-level variables xt
ℓ and the state-level ones

x̃t
s). Even when a network flow formulation is used, integrality constraints cannot be relaxed due

to the presence of the additional decision variables ρ and η.

Nonetheless, we can solve this MIO formulation for small values of planning horizon (T ) and

compare the optimal objective value with (i) the upper bound obtained from Algorithm 1 (repre-

sented as UB) and (ii) the best solution found by Algorithm 2 (represented as Alg 2). We report

these results in Figure D.3, for six instances (generated by taking 6 initial time period, uniformly

spread across the year). Across all instances and for T ranging from 3 to 16 (2 days), we observe

that across Algorithm 2 recovers the optimal solution ( (Alg 2 - MIO) / MIO = 0% ). However,

the upper bound from the path-independent relaxation is systematically 1% higher than the true

objective value. In other words, Algorithm 2 returns a positive optimality gap around 1%, although

the solution returned is actually optimal. These results on smaller values of T suggest that the value
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(a) Result averaged over six simulations (start-
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155)

Figure D.3 Gap of upper bound (UB) and our best solution (by Alg 2) compared to the exact solution (by MIO)

under different planning horizons. All simulations start at (30.76◦N, 138.44◦W).

of optimality gap returned by Algorithm 2 is mostly an indicator of the tightness of the relaxation,

rather than an indicator of the sub-optimality. While the average optimality gap is small, there is

discrepancy across instances. We report the results for one instance with particularly large gap in

Figure D.3b. In this case, we observe that the quality of the upper-bound degrades as the planning

horizon increases (as suggested by the bounds provided in Proposition 2).

Unfortunately, the MIO approach becomes computationally prohibitive when T increases. We

report the average computational time of Algorithm 1, Algorithm 2, and the MIO approach in

Figure D.4. We observe that the time needed to solve the MIO formulation increases exponentially

as the planning horizon increases and is already 2 orders of magnitude larger than Algorithm 2 for

T = 16 (2 days). Moreover, in addition to the raw computational time needed to solve the MIO

formulation, we need to compute the matrices Qt. For T = 16, there are 16 such matrices of size

392× 392 and it takes 4.3 to 5.8 hours to compute them. We did not include this processing time

in the computational time of MIO reported in Figure D.4.

In summary, on instances with up to T = 16 time steps, we observe that Algorithm 2 finds the

optimal solution in most of the instances, while reducing computational time by two orders of

magnitude compared with an MIO approach. However, it does return a positive optimality gap

due to fact that the relaxation is not tight.
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Figure D.4 Computational times under different planning horizons, averaged over 6 simulations (starting at day

43, 99, 155, . . . , 323).

D.3. Exact branch-and-bound scheme

In our algorithmic strategy, we solve a relaxation of (4) where we use the raw density maps rt

(path-independent) as edge lengths. Since for any admissible path x, rt+1
|x0:t ≤ rt+1, this relaxation

provides a valid upper bound on the objective of (4). In this section, we propose a branching

strategy to refine this upper approximation and converge towards the optimal solution.

Since the path-dependent rewards, rt+1
|x0:t , depend on the specific locations visited by the system,

a branching rule must fix the location of the system (at a particular time) in order to improve the

reward approximation. Let us consider a subset of trajectories X̃ ⊆ X such that trajectories within

X̃ must pass through k locations at k particular time points. Formally, we consider an integer k,

times t1, . . . , tk ∈ T , and locations ℓ1, . . . , ℓk ∈L and assume that X̃ = {x∈X : xti
ℓi
= 1,∀i= 1, . . . , k}.

We construct an upper bound on the path-dependent reward, r̃, as follows:

r̃0 = r0,

r̃t+1 =

{
Qt (r̃t−αr̃t ◦xt) if t∈ {t1, . . . , tk},
Qtr̃t otherwise.

(8)

With this definition, we have

rt+1
|x0:t ≤ r̃t+1, ∀t≥ 0, ∀x∈ X̃ . (9)

We delay a formal proof of this property to the end of this section. Instead, let us now describe how

we can use this construction to design a tailored branch-and-bound algorithm for our problem.
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We consider the subproblem of finding the longest (path-dependent) path among all trajectories

in X̃ ⊆ X :

max
x∈X̃

∑
t∈T

∑
s∈St

rts|x0:t−1x
t
s s.t. rt+1

|x0:t =Qt(rt
|x0:t−1 ,x

t). (10)

Given the valid upper bound on the path-dependent rewards over X̃ , r̃, defined by (8), we can

apply Algorithm 2 on this restricted problem and obtain an upper and lower bound on (10). To

refine this approximation, we pick a time t0 ∈ T and a location ℓ0 ∈L and partition X̃ into

X̃

X̃0
X̃ \ X̃0

where X̃0 := {x ∈ X̃ : xt0
ℓ0
= 1}. In other words, X̃0 fixes a new time/location for the admissible

trajectories. Hence, we can construct a tighter upper approximation of the path-dependent rewards

over X̃0 (the left child node) by applying (8). The subproblem X̃0 benefits from both a tighter

approximation and a reduced search space, so we should expect to effectively reduce the optimality

gap on this child node. For the right child node, however, the benefit only comes from reducing

the search space from X̃ to X̃ \ X̃0, which is not very restrictive because this set still contains

trajectories that can be close to ℓ0 at time t0 (or trajectories that visit ℓ0 at time t0± 1). Hence,

the improvement in the upper bound should be marginal (as confirmed in preliminary numeri-

cal experiments we conducted). Because of this imbalance, we expect this branching scheme to

experience very slow convergence towards the optimal solution and do not view it as practically

relevant for our application. Nonetheless, theoretically, this branching strategy eventually enumer-

ates all possible trajectories so is guaranteed to converge to the optimal solution after a finite yet

exponential number of iterations.

Proof of (9) We prove the result by induction on k.

For k= 0 (no location is fixed), we have X̃ =X . Furthermore, r̃0 = r0, and r̃t+1 and rt+1 follow

the same recursive formula. So, for any t≥ 0, r̃t+1 = rt+1. We conclude by noting that rt+1 ≥ rt+1
|x0:t

for any x∈X (Proposition 2).

Fix k≥ 0. We assume that the result holds for k, namely, we assume that for any set X̃ of the form

{x∈X : xti
ℓi
= 1,∀i= 1, . . . , k}, the reward vector constructed according to the recursive formula (8)

satisfies the property (9). Let us consider a set of the form X̃ = {x∈X : xti
ℓi
= 1,∀i= 1, . . . , k+1}

and assume, without loss of generality, that t1 < · · ·< tk < tk+1. Define X̄ := {x∈X : xti
ℓi
= 1,∀i=
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1, . . . , k}, the set obtained by imposing the first k (out of k+1) locations imposed by X̃ , and denote

r̄ the associated reward vector defined by (8).

By the induction hypothesis applied to the set X̄ , we have

rt+1
|x0:t ≤ r̄t+1, ∀t≥ 0, ∀x∈ X̄ .

Furthermore, the definition of r̃t+1 only differs from that of r̄t+1 after time tk+1. In other words,

for any t≥ 0, we have

r̃t+1 =


r̄t+1 if t < tk+1,

Qt [r̄t ◦ (1−αxt)] if t= tk+1,

Qtr̃t if t > tk+1.

We now analyze each case separately.

For t < tk+1: Since X̃ ⊆ X̄ , we have

r̃t+1 = r̄t+1 ≥ rt+1
|x0:t , ∀x∈ X̃ ⊆ X̄ .

For t = tk+1: Taking t = tk+1 − 1 in the inequality above, we have just proved that r̃tk+1 ≥

r
tk+1

|x0:tk+1−1 . Multiplying both sides of these inequalities (component-wise) by 1− αxtk+1 ≥ 0 and

multiplying by the non-negative matrix Qtk+1 yields

r̃tk+1+1 :=Qtk+1 [r̃tk+1 ◦ (1−αxtk+1)]≥Qtk+1

[
r
tk+1

|x0:tk+1−1 ◦ (1−αxtk+1)
]
,

where the right-hand side is precisely the definition of r
tk+1+1

|x0:tk+1
for trajectories x∈ X̃ .

For t > tk+1: We have

r̃t+1 ≥ rt+1
|x0:t , ∀x∈ X̃ , for t= tk+1.

If the inequality holds for some t≥ tk+1, then multiplying by Qt+1 ≥ 0 leads to

r̃t+2 :=Qt+1r̃t+1 ≥Qt+1rt+1
|x0:t ≥Qt+1rt+1

|x0:t ◦ (1−αxt+1) = rt+2
|x0:t+1 ,

for any x ∈ X̃ , where the last inequality holds because (1− αxt+1) ≤ 1. Thus, we can prove the

desired properties for all t= tk+1, . . . , T by induction. □

Appendix E: Numerical Experiment Supplement Result

In this section, we provide supplementary results to the numerical experiments presented in Section

5.
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∆mean Std. error t-stat p-value
95% Confidence interval
Lower Upper

Myopic vs. Benchmark 21.199 3.032 6.993 1.45× 10−5 14.594 27.804
Week vs. Benchmark 21.381 1.940 11.022 1.24× 10−7 17.154 25.608
Week-Folding vs. Benchmark 26.422 2.750 9.608 5.51× 10−7 20.430 32.413
Week-Rolling vs. Benchmark 26.380 2.154 12.246 3.86× 10−8 21.686 31.073

Table E.1 Paired t-test to evaluate the benefit (in terms of weekly plastic collected) of each optimization

method compared with the benchmark

E.1. Overall improvement in plastic collection rate

Figure 8a reports the average weekly quantity of plastic collected by the system, for different

routing/extraction scheduling algorithms. We can visually infer that optimization methods provide

a significant improvement over the benchmark. To formalize this statement, we conduct a paired

t-test to compare the 4-week reward of each method to the benchmark, over the 13 simulations

and report the results of these comparisons in Table E.1. Note, unfortunately, that we cannot

perform paired t-tests at the week level because the starting location at the beginning of each week

is different for each method (while the starting location at the beginning of each simulation is the

same).

While the results in the main paper focus mostly on the resulting collection efficiency, we now

also report results on computational tractability. Figure E.1 computational time for each method.

The DP method with rolling windows takes more time than others. In our DP methods, the size

of state ST increases exponentially with the total planning time frame T . The rolling method

requires planning for 7 days repeatedly, leading to a longer computational time. In practice, the

route decision is updated daily, and the time budget for model planning is around 12 hours, much

larger than the 24 minutes we need.
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Figure E.1 Average computational time of benchmark and DP methods (1-week planning)

E.2. Heterogeneity across seasons and the impact of extraction scheduling

In Figure 8b, we observe a significant impact of the season on collection efficiency, for all methods.

Figure E.2 reports the performance of each method, on the winter and summer months separately.

Here, we group days 1–84 (first three simulations) and day 280–365 (last three simulations) into

‘Winter’ and the remaining 7 simulations as ‘Summer’. We see that both our methods and the

benchmark collect significantly less plastic during the winter months (around a factor 2 decrease). In

addition, the value of optimization is stronger during the winter. For example, Week-Rolling collects

1.5× more plastic than the benchmark on average, which breaks down into a 1.35× improvement

and a 2× improvement in the winter.

As discussed in Section 5.3, the heterogeneity in efficiency observed cannot be explained by

differences in plastic densities. Indeed, as shown in Figure E.3a, real plastic density in the GPGP
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Figure E.2 Average weekly reward group by season
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Figure E.3 Average real and collectable plastic density in the GPGP over the year 2002. The collectable plastic

density in the right panel is calculated by assigning zero density to any location with wave heights

above 6 meters. Values are reported in relative terms compared to yearly average.

globally increases over time, due to new plastic being emitted in the oceans. In our data (year

2002), we observe that the average plastic density in the GPGP increased by 10%. However, we

do not observe an inverted U-shaped behavior as in Figure 8b, suggesting that weather (and wave

height in particular) is the main driver of performance here. To consider the effect of high wave

on the collection process, we calculate the average collectable plastic in the GPGP in Figure E.3b,

where we treat the plastic density of a high wave location (wave height ≥ 6 meters as zero. It can

be seen that the collectable plastic density has such inverted U-shaped, but the difference between

the highest collectable density month only exceed 20% more density than the lowest collectable

density month. In contrast, in Figure 8b, the maximum gap between the highest collection month

and lowest collection month is much higher (more than 300% for Week-Rolling and more than

500% for the Benchmark approach). Therefore, the change in collectable plastic density cannot

fully explain the seasonal heterogeneity in performance efficiency.

In Figure E.4, we report the computational time of each method, grouped by season instead

of averaged over the year. Overall, we observe that bad weather conditions limit the number of

feasible states, hence tend to lead to shorter computational times than for instances occurring the

summer months.
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Figure E.4 Computational time of different methods by season
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